Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://europepmc.or...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://europepmc.org/articles...
Part of book or chapter of book
Data sources: UnpayWall
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Exploring Structure–Activity Relationships

Authors: Rajarshi, Guha;

On Exploring Structure–Activity Relationships

Abstract

Understanding structure-activity relationships (SARs) for a given set of molecules allows one to rationally explore chemical space and develop a chemical series optimizing multiple physicochemical and biological properties simultaneously, for instance, improving potency, reducing toxicity, and ensuring sufficient bioavailability. In silico methods allow rapid and efficient characterization of SARs and facilitate building a variety of models to capture and encode one or more SARs, which can then be used to predict activities for new molecules. By coupling these methods with in silico modifications of structures, one can easily prioritize large screening decks or even generate new compounds de novo and ascertain whether they belong to the SAR being studied. Computational methods can provide a guide for the experienced user by integrating and summarizing large amounts of preexisting data to suggest useful structural modifications. This chapter highlights the different types of SAR modeling methods and how they support the task of exploring chemical space to elucidate and optimize SARs in a drug discovery setting. In addition to considering modeling algorithms, I briefly discuss how to use databases as a source of SAR data to inform and enhance the exploration of SAR trends. I also review common modeling techniques that are used to encode SARs, recent work in the area of structure-activity landscapes, the role of SAR databases, and alternative approaches to exploring SAR data that do not involve explicit model development.

Keywords

Structure-Activity Relationship, Drug Discovery, Computational Biology, Humans, Quantitative Structure-Activity Relationship

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 1%
Top 10%
Top 10%