
pmid: 22407709
Evolutionary genomics is a field that relies heavily upon comparing genomes, that is, the full complement of genes of one species with another. However, given a genome sequence and little else, as is now often the case, genes must first be found and annotated before downstream analyses can be done. Computational gene prediction techniques are brought to bear on the problem of constructing a genome annotation as manual annotation is extremely time-consuming and costly. This chapter reviews the methods by which the individual components of a typical gene structure are detected in genomic sequence and then discusses several popular statistical frameworks for integrated gene prediction on eukaryotic genome sequences.
Models, Statistical, Computational Biology, Genomics, Markov Chains
Models, Statistical, Computational Biology, Genomics, Markov Chains
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
