<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Atomic force microscopy (AFM) is a powerful and widely used imaging technique that can visualize single molecules under physiological condition at the nanometer scale. In this chapter, an AFM-based nanorobot for biological studies is introduced. Using the AFM tip as an end effector, the AFM can be modified into a nanorobot that can manipulate biological objects at the single-molecule level. By functionalizing the AFM tip with specific antibodies, the nanorobot is able to identify specific types of receptors on the cell membrane. It is similar to the fluorescent optical microscopy but with higher resolution. By locally updating the AFM image based on interaction force information and objects' model during nanomanipulation, real-time visual feedback is obtained through the augmented reality interface. The development of the AFM-based nanorobotic system enables us to conduct in situ imaging, sensing, and manipulation simultaneously at the nanometer scale (e.g., protein and DNA levels). The AFM-based nanorobotic system offers several advantages and capabilities for studying structure-function relationships of biological specimens. As a result, many biomedical applications can be achieved by the AFM-based nanorobotic system.
Keratinocytes, Humans, Nanotechnology, Robotics, Microscopy, Atomic Force, Cell Line
Keratinocytes, Humans, Nanotechnology, Robotics, Microscopy, Atomic Force, Cell Line
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |