
pmid: 19718504
Reverse chemical genomic approach is expected to greatly expedite the discovery of new compounds, which modulate biological phenotypes in various ways. However, toward this end, various contents and platforms must be well prepared in the research community. In this regard, genome-wide preparation of clones for production of proteins in either a native or a fusion form, which are conventionally called ORFeome clones, would play a crucial role in realizing reverse chemical genomics as an approach of choice. In this chapter, currently available ORFeome cloning technologies are overviewed and a selection guideline for them is provided.
Quality Control, Open Reading Frames, Recombinant Fusion Proteins, Genetic Vectors, Genomics, Cloning, Molecular, Molecular Biology, Recombinant Proteins, High-Throughput Screening Assays
Quality Control, Open Reading Frames, Recombinant Fusion Proteins, Genetic Vectors, Genomics, Cloning, Molecular, Molecular Biology, Recombinant Proteins, High-Throughput Screening Assays
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
