<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 19588090
Chromatin immunoprecipitation on microarrays, also known as ChIP-chip, is a popular technique for genome-wide localization of DNA-binding proteins. However, the high density (several million genomic sequences for small eukaryote genomes) and the high noise-to-signal ratio of microarrays make the analysis of ChIP-chip data very challenging. In this chapter, we review some of the issues involved in the analysis of ChIP-chip data and present a few statistical methods that can be used to overcome these issues and improve the detection of DNA-protein binding sites.
Chromatin Immunoprecipitation, Research Design, Animals, Humans, Models, Biological, Algorithms, Software, Oligonucleotide Array Sequence Analysis
Chromatin Immunoprecipitation, Research Design, Animals, Humans, Models, Biological, Algorithms, Software, Oligonucleotide Array Sequence Analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |