<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 19768599
Single nucleotide polymorphisms (SNPs) are ideal markers for identifying genes associated with complex diseases for two main reasons. Firstly, SNPs are densely located on the human genome at about one SNP per approximately 500-1,000 base pairs. Secondly, a large number of commercial platforms are available for semiautomated or fully automated SNP genotyping. These SNP genotyping platforms serve different purposes since they differ in SNP selection, reaction chemistry, signal detection, throughput, cost, and assay flexibility. This chapter aims to give an overview of some of these platforms by explaining the technologies behind each platform and identifying the best application scenarios for each platform through cross-comparison. The readers may delve into more technical details in the following chapters.
Genotype, Humans, Physical Chromosome Mapping, Polymorphism, Single Nucleotide, Genome-Wide Association Study, High-Throughput Screening Assays
Genotype, Humans, Physical Chromosome Mapping, Polymorphism, Single Nucleotide, Genome-Wide Association Study, High-Throughput Screening Assays
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |