<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 20225158
Nuclear DNA helicase II (NDH II) was first isolated from calf thymus using a DNA-unwinding assay. Subsequently it has been shown to be a homologue of human RNA helicase A (RHA) and the maleless protein (MLE) from Drosophila. Accordingly, the protein possesses both DNA and RNA unwinding activities. Also, it can use all four NTPs or dNTPs to fuel the reaction. At its N-terminus it possesses two double-strand RNA binding domains (dsRBD I and II), while the C-terminus comprises an imperfect glycine (G)- and arginine (R)-rich repeat, a so-called RGG-box that preferably binds to ssDNA or ssRNA. Many proteins interact with NDH II both at its N- and C-terminus and thereby mediate transcriptional regulation, RNA processing, and transport, the DNA damage response and genome surveillance. The latter includes the histone variant gamma-H2AX and the Werner syndrome helicase (WRN). Here we describe experimental approaches to obtain mechanistic information about this important nuclear helicase.
Nucleotides, DNA Helicases, Animals, Humans, Cattle, DNA, Recombinant Proteins
Nucleotides, DNA Helicases, Animals, Humans, Cattle, DNA, Recombinant Proteins
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |