<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 19212721
Microchip capillary electrophoresis (MCE) is gaining popularity due to the developments of simple microfabrication methods under nonstringent laboratory conditions. Moreover, the low material and production costs of polymer-based microchips have further stimulated advances in the applications of MCE in various fields, including clinical analysis, drug screening, biomarker identification, and biosensing. In this chapter, a simple and robust protocol for fabrication of microchips for lab-on-chip testing and microchip electrophoresis is described. The microchips are hybrid poly(dimethylsiloxane) (PDMS)/glass microchips, which are produced by a combination of photolithography and micromolding processes. This type of microchip has been used in a wide range of analyses.
Electrophoresis, Microchip, Equipment Failure Analysis, Flow Injection Analysis, Biological Assay, Equipment Design
Electrophoresis, Microchip, Equipment Failure Analysis, Flow Injection Analysis, Biological Assay, Equipment Design
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |