Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2002 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://doi.org/10.1385/0-8960...
Part of book or chapter of book . 2003 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1385/1-5925...
Part of book or chapter of book . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sodium-Coupled GABA and Glutamate Transporters

Structure and Function
Authors: Baruch I. Kanner;

Sodium-Coupled GABA and Glutamate Transporters

Abstract

Sodium-coupled neurotransmitter transporters, located in the plasma membrane of nerve terminals and glial processes, serve to keep the extracellular transmitter levels below those which are neurotoxic. They also help, in conjunction with diffusion, to terminate its action in synaptic transmission. Such a termination mechanism operates with most transmitters, including γ-aminobutyric acid (GABA), l-glutamate, glycine, dopamine (DA), serotonin, and norepinephrine (NE). Another termination mechanism is observed with cholinergic transmission. After dissociation from its receptor, acetylcholine is hydrolyzed into choline and acetate. The choline moiety is then recovered by sodium-dependent transport as described here. As the concentration of the transmitters in the nerve terminals is much higher than in the cleft—typically by four orders of magnitude—energy input is required. The transporters that are located in the plasma membranes of nerve endings and glial cells obtain this energy by coupling the flow of neurotransmitters to that of sodium. The (Na+ + K+)-ATPase generates an inwardly directed electrochemical sodium gradient which is utilized by the transporters to drive “uphill” transport of the neurotransmitters (reviewed in 1–3). Neurotransmitter-uptake systems have been investigated in detail by using plasma membranes obtained upon osmotic shock of synaptosomes. It appears that these transporters are coupled not only to sodium, but also to additional ions such as potassium or chloride (Table 1).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?