
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Click chemistry has found wide application in bioconjugation, enabling control over the site of modification in biomolecules. Demonstrations of this chemistry to construct chemically defined antibody-drug conjugates (ADCs) have increased in recent years, following studies that support benefits of homogeneity and site-specificity of drug placement on the antibody. In this chapter, a brief history of early applications of this chemistry in ADCs is presented. Examples of click chemistries that are utilized for ADC synthesis, including those currently undergoing clinical investigations, are enumerated. Protocols for two common conjugation methods based on carbonyl-aminooxy coupling and strain-promoted azide-alkyne cycloaddition are described.
Immunoconjugates, Cycloaddition Reaction, Drug Development, Oximes, Antibodies, Monoclonal, Humans, Click Chemistry, Chemistry Techniques, Synthetic, Amino Acids
Immunoconjugates, Cycloaddition Reaction, Drug Development, Oximes, Antibodies, Monoclonal, Humans, Click Chemistry, Chemistry Techniques, Synthetic, Amino Acids
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
