Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Integrating Molecular Docking and Molecular Dynamics Simulations

Authors: Lucianna H S, Santos; Rafaela S, Ferreira; Ernesto R, Caffarena;

Integrating Molecular Docking and Molecular Dynamics Simulations

Abstract

Computational methods, applied at the early stages of the drug design process, use current technology to provide valuable insights into the understanding of chemical systems in a virtual manner, complementing experimental analysis. Molecular docking is an in silico method employed to foresee binding modes of small compounds or macromolecules in contact with a receptor and to predict their molecular interactions. Moreover, the methodology opens up the possibility of ranking these compounds according to a hierarchy determined using particular scoring functions. Docking protocols assign many approximations, and most of them lack receptor flexibility. Therefore, the reliability of the resulting protein-ligand complexes is uncertain. The association with the costly but more accurate MD techniques provides significant complementary with docking. MD simulations can be used before docking since a series of "new" and broader protein conformations can be extracted from the processing of the resulting trajectory and employed as targets for docking. They also can be utilized a posteriori to optimize the structures of the final complexes from docking, calculate more detailed interaction energies, and provide information about the ligand binding mechanism. Here, we focus on protocols that offer the docking-MD combination as a logical approach to improving the drug discovery process.

Keywords

Molecular Docking Simulation, Structure-Activity Relationship, Proteins, Molecular Dynamics Simulation, Ligands

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    204
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
204
Top 0.1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!