
pmid: 31148067
A hypoxic environment can be defined as a region of the body or the whole body that is deprived of oxygen. Hypoxia is a feature of many diseases, such as cardiovascular disease, tissue trauma, stroke, and solid cancers. A loss of oxygen supply usually results in cell death; however, when cells gradually become hypoxic, they may survive and continue to thrive as described for conditions that promote metastatic growth. The role of hypoxia in these pathogenic pathways is therefore of great interest, and understanding the effect of hypoxia in regulating these mechanisms is fundamentally important. This chapter gives an extensive overview of these mechanisms. Moreover, given the challenges posed by tumor hypoxia we describe the current methods to simulate and detect hypoxic conditions followed by a discussion on current and experimental therapies that target hypoxic cells.
Oxygen, Neoplasms, Biomarkers, Tumor, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Reactive Oxygen Species
Oxygen, Neoplasms, Biomarkers, Tumor, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Reactive Oxygen Species
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
