
pmid: 29277868
Thanks in large part to newer, better, and cheaper DNA sequencing technologies, an enormous number of metagenomic sequence datasets have been and continue to be generated, covering a huge variety of environmental niches, including several different human body sites. Comparing these metagenomes and identifying their commonalities and differences is a challenging task, due not only to the large amounts of data, but also because there are several methodological considerations that need to be taken into account to ensure an appropriate and sound comparison between datasets. In this chapter, we describe current techniques aimed at comparing metagenomes generated by 16S ribosomal RNA and shotgun DNA sequencing, emphasizing methodological issues that arise in these comparative studies. We provide a detailed case study to illustrate some of these techniques using data from the Human Microbiome Project comparing the microbial communities from ten buccal mucosa samples with ten tongue dorsum samples in terms of alpha diversity, beta diversity, and their taxonomic and functional profiles.
Tongue, Microbiota, Mouth Mucosa, Computational Biology, Humans, Metagenomics, Sequence Analysis, DNA, Software
Tongue, Microbiota, Mouth Mucosa, Computational Biology, Humans, Metagenomics, Sequence Analysis, DNA, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
