<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 25480648
Drug resistance is a fundamental problem in the treatment of cancer since cancer that becomes resistant to the available drugs may leave the patient with no therapeutic alternatives. In this chapter, we consider the dynamics of drug resistance in blood cancer and the related issue of the dynamics of cancer stem cells. After describing the main types of chemotherapeutic agents available for cancer treatment, we review the different mechanisms of drug resistance development. Various mathematical models of drug resistance found in the literature are then reviewed. Given the well-known hierarchy of the hematopoietic system, it is critical to focus on those cells that have the ability to self-renew, since these will be the only cells able to induce long-term drug resistance. Thus, a recent mathematical model taking into account the complex dynamics of the leukemic stem-like cells is described. The chapter closes with a few applications of this model to chronic myeloid leukemia.
Drug Resistance, Neoplasm, Hematologic Neoplasms, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Neoplastic Stem Cells, Humans, Antineoplastic Agents, Models, Biological
Drug Resistance, Neoplasm, Hematologic Neoplasms, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Neoplastic Stem Cells, Humans, Antineoplastic Agents, Models, Biological
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |