Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 1994 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selecting and checking models

Authors: Ludwig Fahrmeir; Gerhard Tutz;

Selecting and checking models

Abstract

Fitting data by a certain generalized linear model means choosing appropriate forms for the predictor, the link function, and the exponential family or variance function. In the previous chapters Pearsons’s X 2, the deviance and, in the multinomial case, the power-divergence family were introduced as general goodness-of-fit statistics. This chapter considers more specific tools to select and check models. Section 4.1 deals with variable selection, i.e., which variables should be included in the linear predictor. Diagnostic methods based on the hat matrix and on residuals are described in Section 4.2, and Section 4.3 covers general misspecification tests, such as Hausman-type tests and tests for nonnested models. We do not treat tests for specific directions, such as testing the correct form of the link function by embedding it in a broader parametric class of link functions. A survey of tests of this type is contained in Chapter 11.4 of McCullagh & Nelder (1989). In addition to the methods of this chapter, nonparametric approaches, as in Chapter 5, may also be used to check the adequacy of certain parametric forms.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!