Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2004 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Time-Dependent Nanoindentation

Authors: Anthony C. Fischer-Cripps;

Time-Dependent Nanoindentation

Abstract

In general, materials can resist deformation in a solid-like or viscous-like manner. Solid-like materials store energy under deformation, and upon removal of stress, returns to its original state. Viscous materials dissipate energy during deformation and upon removal of stress, remains in its deformed state. Materials with combined solid-like and viscous-like properties are said to be viscoelastic. Nanoindentation can be used to quantitatively determine the viscoelastic properties of materials. In one method, a small oscillatory force or displacement is imparted to the indenter. The resulting load and displacement signals provide a method whereby the elastic and viscous components of the specimen response can be calculated. In another method, the load or displacement is held at a fixed value and the change in displacement (creep) or load (relaxation) recorded over a period of time. Application of an appropriate mechanical model can yield values for the elastic and viscous properties of the specimen.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!