Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Periodic Solutions of Periodic Systems

Authors: Miklós Farkas;

Periodic Solutions of Periodic Systems

Abstract

In this chapter we study the existence, stability and isolation of periodic solutions belonging to n-dimensional systems of periodic nonlinear differential equations of the form ẋ = f (t, x) where f is periodic in t with some period T > 0: f (t + T, x) = f (t,x). One may believe that an autonomous system of the form ẋ = f (x) is a special case since, obviously, here the right-hand side is periodic in t with arbitrary positive period. Though this is true, autonomous systems cannot be treated similarly to periodic non-autonomous ones. This is so because in the case of an autonomous system we do not know a priori what may be the period of a periodic solution if there exists any, and also because the integral curve belonging to a non-constant periodic solution of an autonomous system can never be “isolated”. More will be said about these problems at the appropriate places. We have mentioned these problems here in order to explain why autonomous systems will be treated in the next chapter. The methods developed with the aim of establishing the existence and stability of periodic solutions can be classified in two groups. The first is the group of topological methods based on degree theory and fixed point theorems. These methods will be presented in the first Section of this chapter. The background material can be found in Appendix 2. The second group consists of (small) perturbation methods. These are more effective but have the disadvantage that they work under the assumption that the given differential equation is a “perturbation” of another one whose periodic solution is known. Both methods have their origin in the works of H. Poincare [1899]. We shall treat the perturbation methods separately in Chapter 6. In the second section of this chapter we study the stability and isolation problems of periodic solutions. In Sections 3, 4 and 5, applications will be presented.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!