
In this section I will put the hamwnic oscillator in its place-on a pedestaL Not only is it a system that can be exactly solved (in classical and quantum theory) and a superb pedagogical tool (which will be repeatedly exploited in this text), but it is also a system of great physical relevance. As will be shown below, any system fluctuating by small amounts near a configuration of stable equilibrium may be described either by an oscillator or by a collection of decoupled harmonic oscillators. Since the dynamics of a collection of noninteracting oscillators is no more complicated than that of a single oscillator (apart from the obvious N-fold increase in degrees of freedom), in addressing the problem of the oscillator we are actually confronting the general problem of small oscillations near equilibrium of an arbitrary system.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
