
In this chapter we shall apply the theory of derived functors to the important special case where the ground ring Λ is the group ring ℤ G of an abstract group G over the integers. This will lead us to a definition of cohomology groups H n (G, A) and homology groups H n (G, B), n ≧ 0, where A is a left and B a right G-module (we speak of “G-modules” instead of “ℤG-modules”). In developing the theory we shall attempt to deduce as much as possible from general properties of derived functors. Thus, for example, we shall give a proof of the fact that H 2 (G, A) classifies extensions which is not based on a particular (i.e. standard) resolution.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
