Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bacterial Transformations of and Resistances to Heavy Metals

Authors: S, Silver; T K, Misra;

Bacterial Transformations of and Resistances to Heavy Metals

Abstract

Bacteria carry out chemical transformations of heavy metals. These transformations (including oxidation, reduction, methylation, and demethylation) are sometimes byproducts of normal metabolism and confer no known advantage upon the organism responsible. Sometimes, however, the transformations constitute a mechanism of resistance. Many species of bacteria have genes that control resistances to specific toxic heavy metals. These resistances often are determined by extrachromosomal DNA molecules (plasmids). The same mechanisms of resistance occur in bacteria from soil, water, industrial waste, and clinical sources. The mechanism of mercury and organomercurial resistance is the enzymatic detoxification of the mercurials into volatile species (methane, ethane, metallic HgO) which are rapidly lost from the environment. Cadmium and arsenate resistances are due to reduced net accumulation of these toxic materials. Efficient efflux pumps cause the rapid excretion of Cd2+ and AsO4(3-). The mechanisms of arsenite and of antimony resistance, usually found associated with arsenate resistance, are not known. Silver resistance is due to lowered affinity of the cells for Ag+, which can be complexed with extracellular halides, thiols, or organic compounds. Sensitivity is due to binding of Ag+ more effectively to cells than to Cl-.

Related Organizations
Keywords

Antimony, Silver, Drug Resistance, Microbial, Mercury, Bacterial Physiological Phenomena, Methylation, Arsenic, Zinc, Metals, Oxidation-Reduction, Cadmium, Plasmids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!