<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We have here a two-body problem, of an electron of charge -e and mass m, and a proton of charge +e and mass M. By using CM and relative coordinates and working in the CM frame, we can reduce the problem to the dynamics of a single particle whose mass µ = mM /(m + M) is the reduced mass and whose coordinate r is the relative coordinate of the two particles. However, since m/M ≃ 1/2000, as a result of which the relative coordinate is essentially the electron's coordinate and the reduced mass is essentially m, let us first solve the problem in the limit M→∞. In this case we have just the electron moving in the field of the immobile proton. At a later stage, when we compare the theory with experiment, we will see how we can easily take into account the finiteness of the proton mass.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |