Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Motor Cortex and the Distributed Anatomy of Finger Movements

Authors: Marc H, Schieber;

Motor Cortex and the Distributed Anatomy of Finger Movements

Abstract

Voluntary movements are thought to be controlled via a well-ordered, spatially discrete, somatotopic map in the primary motor cortex (M1). We examined this hypothesis in monkeys trained to perform visually-cued, individuated flexion and extension movements of each digit and of the wrist. Single neurone recordings in M1 during such finger movements revealed two unexpected features. First, single M1 neurones often discharge during instructed movements of multiple digits. Second, neurones active during any particular instructed movement are distributed widely throughout the same M1 territory as neurones active during any other movement. Reversible, partial inactivation of the M1 hand representation produced by injection of 5-10 microg muscimol at one site impaired the monkeys' ability to perform finger movements, but no relationship was evident between the particular finger movements that were affected and the mediolateral location of the injection site along the central sulcus. Thus each finger movement is represented by activity distributed widely in the M1 upper extremity representation. If not controlled from spatially segregated M1 regions, movements of different fingers might be controlled by groups of spatially scattered but physiologically similar neurones. Cluster analysis of M1 neurones demonstrated a large group that discharged during most finger movements, and a small group that paused during most movements. Distinct functional groups of M1 neurones that might control particular finger movements were identified inconsistently. We therefore hypothesize that M1 neurones are a very diverse network controlling finger movements.

Related Organizations
Keywords

Fingers, Neurons, Brain Mapping, Electromyography, Movement, Motor Cortex, Animals, Haplorhini, Wrist

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!