
Evaluation of European-style derivatives can be reduced to solving initial value or initial-boundary value problems of parabolic partial differential equations. This chapter discusses numerical methods for such problems. If an American option problem is formulated as a linear complementarity problem, then the only difference between solving a European option and an American option is that if the solution obtained by the partial differential equation does not satisfy the constraint at some point, then the solution of the PDE at the point should be replaced by the value determined from the constraint condition. Such methods are usually referred to as projected methods for American-style derivatives. Therefore, the two methods are very close, and we also study the projected methods in this chapter.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
