Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Brown Adipose Tissue

Authors: Martin Klingenspor; Tobias Fromme;

Brown Adipose Tissue

Abstract

A constant body temperature can only be maintained when the rate of heat dissipation equals the rate of heat loss. Thermoregulatory heat production mechanisms compensating heat loss are classically categorized as shivering and non-shivering thermogenesis. Non-shivering thermogenesis occurs in brown adipose tissue, a unique heat producing organ only found in mammals. In brown adipose tissue mitochondria, the proton motive force across the inner membrane is dissipated as heat rather than converted to ATP. This tightly regulated process is catalyzed by the uncoupling protein 1. Non-shivering thermogenesis is elicited by the sympathetic innervation from hypothalamic and brain stem control regions which are activated by cold sensation. In a cold environment up to half of the metabolic rate of rodents can be attributed to non-shivering thermogenesis in brown adipose tissue. The high thermogenic capacity of brown adipose tissue recruited in the defense of normothermia may also play a role in the regulation of energy balance in the face of hypercaloric nutrition. In this light, the discovery of significant amounts of metabolically active brown adipose tissue in healthy adult humans reintroduces an old player in human energy balance research and may enable new strategies to prevent excess body fat accumulation in man.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?