Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanics of Fracture

Authors: J. F. Knott;

Mechanics of Fracture

Abstract

Calculations of the theoretical strengths of crystalline solids are usually based on idealised forms of atomic force-displacement curves, in which the force is defined as the differential with respect to distance of the inter-atomic or inter-ionic energy. The energy curve is similar to that for a diatomic molecule in that it represents the resultant of inter-atomic repulsions and attractions; the nature and strength of the attractive forces depending on the bond type: ionic, covalent, metallic, or Van der Waals. Differences in character between a lattice and a molecule occur at separations of order one lattice spacing, when Friedel oscillations in the screening charge cause the long range component of the interaction potential in the lattice to undergo a damped oscillation about zero. For small displacements, the atomic force/displacement curve is linear, having a slope equivalent to Young’s modulus, E. A lattice also has shear stiffness, denoted by the shear modulus μ. Both E and μ are defined macroscopically, usually for randomly-oriented polycrystals which are assumed to be isotropic. In single crystals, both the tensile stiffness and the shear stiffness vary with the orientation of the crystal with respect to the tensile axis and these variations can be substantial: in iron, for example, the minimum value of E is in the [100]direction (132 GPa at room temperature) and the maximum value is in the [111] direction (260 GPa).

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    608
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
608
Top 1%
Top 0.1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?