Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cardiovascular Drugs...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cardiovascular Drugs and Therapy
Article . 1991 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preconditioning Myocardium with Ischemia

Authors: Keith A. Reimer; Charles E. Murry; Robert B. Jennings;

Preconditioning Myocardium with Ischemia

Abstract

Preconditioning and stunning are the chief adaptive changes induced in myocardium by a brief episode of reversible ischemia followed by arterial reperfusion. In the dog heart, both coexist for a period of at least 20 minutes of reperfusion, but after 120 minutes of reflow, preconditioning is much diminished, while stunning remains fully developed. Preconditioned, stunned, myocardium differs from control "virgin" myocardium in that adenine nucleotide content is reduced to about 50-70% of control, whereas creatine phosphate (CP) greatly exceeds normal--the so-called CP overshoot. When preconditioned myocardium is subjected to sustained ischemia, ATP utilization and anaerobic glycolysis occur at much slower rates than those observed in virgin myocardium. As a result of the early difference in metabolic rate, a longer period of ischemia is required for the ATP and lactate of the preconditioned tissue to reach the levels associated with irreversible injury. Associated with this change is a delay in myocyte death. The molecular events responsible for slower ischemic metabolism and associated tolerance of preconditioned, stunned tissue to a new ischemic episode are not known. Among the reactions that could cause a reduction in energy metabolism is reduced approximately P expenditure by stunned myocardium attempting to contract during the initial phase of ischemia. However, results from in vivo and in vitro experiments suggest that although stunning may be necessary for preconditioning to develop, it alone is not sufficient to cause preconditioning. Alternatively, metabolic changes may be explained by depressed activity of the mitochondrial ATPase during the episode of sustained ischemia. However, no direct experimental evidence supporting this hypothesis is available up to the present time.

Keywords

Adenosine Triphosphate, Animals, Coronary Disease, Myocardial Reperfusion, Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!