
As we consider simultaneous fluid flow and heat transfer in porous media, the role of the macroscopic (Darcean) and microscopic (pore-level) velocity fields on the temperature field needs to be examined. Experiments have shown that the mere inclusion of u D · ∇ 〈T〉 in the energy equation does not satisfactorily account for all the hydrodynamic effects. The pore-level hydrodynamics also influence the temperature field. Inclusion of the effect of the pore-level velocity nonuniformity on the temperature distribution (called the dispersion effect and generally included in the diffusion transport) is the main concern in this chapter.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
