
Now that we have developed the machinery of Galois theory, we apply it in this chapter to study special classes of field extensions. Sections 9 and 11 are good examples of how we can use group theoretic information to obtain results in field theory. Section 10 has a somewhat different flavor than the other sections. In it, we look into the classical proof of the Hilbert Theorem 90, a result originally used to help describe cyclic extensions, and from that proof we are led to the study of cohomology, a key tool in algebraic topology, algebraic geometry, and the theory of division rings.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
