Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Diagonalizing Eisenstein Series. I

Authors: Robert A. Rankin;

Diagonalizing Eisenstein Series. I

Abstract

In this paper we consider the action of Hecke operators T n (n ∈ IN), and their adjoint operators T* n , on Eisenstein series belonging to the group Γ0(N) and having integral weight k > 2 and arbitrary character χ modulo N. It is shown that the space ɛ k (x) spanned by these Eisenstein series splits up into a number of subspaces ɛ k (x,t)> where t is a divisor of N, each being invariant under the operators T n and T* n with (n, N) = 1. If x is a primitive character modulo N, this holds also for T n with (n, N) > 1, but this need not be true for general x modulo N. A basis of modular forms that are eigenfunctions for T n with (n, N) = 1 is constructed for each appropriate t and explicit evaluations of G L \T n are given for each Eisenstein series G L (L ∈ Γ(l)) and any positive integer n prime to N, or any n that is a prime divisor of N, the results being particularly simple when N is squarefree. The corresponding results for G L \T* n when (n, N) > 1 will be given in a subsequent paper.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!