
Green’s functions are useful in solving the first boundary value problem (Dirichlet problem) of potential theory in itself and in the case of conformal mapping of a region onto a disk. In the latter case a relationship is needed between the conformal map and Green’s function for the region. An approximate determination of Green’s functions is an important numerical tool in solving both the Dirichlet problem for different types of regions and the related mapping problem. An integral representation of Green’s function for the disk leads to the Poisson integral. The Dirichlet problem is a special case of the Riemann—Hilbert problem which is discussed in Appendix C. Analogous to Green’s functions, the solution of the second boundary value problem (Neumann problem) of potential theory is the Neumann function which also possesses an integral representation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
