
Numbers of the form \( a + b\sqrt { - 1} \), where a and b are real numbers—what we call complex numbers.appeared as early as the 16th century. Cardan (1501–1576) worked with complex numbers in solving quadratic and cubic equations. In the 18th century, functions involving complex numberswere found by Euler to yield solutions to differential equations. As more manipulations involving complex numbers were tried, it became apparent that many problems in the theory of real-valued functions could be most easily solved using complex numbers and functions. For all their utility, however, complex numbers enjoyed a poor reputation and were not generally considered legitimate numbers until the middle of the 19th century. Descartes, for example, rejected complex roots of equations and coined the term “gimaginary” for such roots. Euler, too, felt that complex numbers “exist only in the imagination” and considered complex roots of an equation useful only in showing that the equation actually has no solutions.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
