<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sphingolipids are a family of ubiquitous membrane components that exhibit multiple functional properties fundamental to cell properties. Sphingolipid transport represents a crucial aspect in the metabolism, signaling and biological role of sphingolipids. Different mechanisms of sphingolipid movements contribute to their selective localization in different membranes but also in different portions and sides of the same membrane, thus ensuring and regulating their interaction with different enzymes and target molecules. In this chapter we will describe the knowledge of the different mechanisms ofsphingolipid movements within and between membranes, focusing on the recent advances in this field and considering the role played by selective sphingolipid molecules in the regulation of these mechanisms.
Sphingolipids, Lipid Bilayers, Biological Transport, Active, Ceramides, Models, Biological, Endocytosis, Glycosphingolipids, Sphingomyelins, Membrane Microdomains, Animals, Humans
Sphingolipids, Lipid Bilayers, Biological Transport, Active, Ceramides, Models, Biological, Endocytosis, Glycosphingolipids, Sphingomyelins, Membrane Microdomains, Animals, Humans
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |