Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mesoscopic Fractional Kinetic Equations versus a Riemann–Liouville Integral Type

Authors: Nigmatullin R.; Trujillo J.;

Mesoscopic Fractional Kinetic Equations versus a Riemann–Liouville Integral Type

Abstract

It is proved that kinetic equations containing noninteger integrals and derivatives are appeared in the result of reduction of a set of micromotions to some averaged collective motion in the mesoscale region. In other words, it means that after a proper statistical average the microscopic dynamics is converted into a collective complex dynamics in the mesoscopic regime. A fractal medium containing strongly correlated relaxation units has been considered. It is shown that in the most cases the original of the memory function recovers the Riemann-Liouville fractional integral. For a strongly correlated fractal medium a generalization of the Riemann-Liouville fractional integral is obtained. For the fractal-branched processes one can derive the stretched exponential law of relaxation that is widely used for description of relaxation phenomena in disordered media. It is shown that the generalized stretched-exponential function describes the averaged collective motion in the fractal-branched complex systems. The application of the fractional kinetic equations for description of the dielectric relaxation phenomena is also discussed. These kinetic equations containing non integer integral and derivatives with real and complex exponents and their possible generalizations can be applicable for description of different relaxation or diffusion processes in the intermediate (mesoscale) region. © 2007 Springer.

Country
Russian Federation
Related Organizations
Keywords

universal decoupling procedure, 530, Generalized Riemann-Liouville fractional integral, 510

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?