<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Membranes consist of an assembly of a wide variety of lipids [1], proteins and carbohydrates that self-organize to assume a host of biological functions in the cell machinery, like the passive and active transport of matter, the capture and storage of energy, the control of the ionic balance, or the intercellular recognition and signalling. In essence, membranes act as walls that delimit the interior of the cell from the outside environment, preventing the free translocation of small molecules from one side to the other. At an atomic level, knowledge of both the structure and the dynamics of membranes remains to a large extent fragmentary, on account of the remarkable fluidity of these systems under physiological conditions. As a result, the amount of experimental information that can be interpreted directly in terms of positions and motions is still rather limited.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |