<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 36346607
To ensure the functionalities of the antibodies in phage-displayed synthetic antibody libraries, we use computational method to evaluate the designs of the antibody libraries. The computational methodologies developed in our lab for designing antibody library provide rich information on the function of the designed antibody sequences-adequate antibody designs for a specific antigen type should have predicted paratopes for the antigen type. This computational assessment of the designed antibody sequences helps eliminate non-functional designs before proceeding to construct the library designs in the wet lab. As such, only reasonable antibody designs are constructed for antibody discoveries.
Peptide Library, Binding Sites, Antibody, Antigens, Antibodies
Peptide Library, Binding Sites, Antibody, Antigens, Antibodies
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |