
pmid: 35857230
Vibrational spectroscopy such as FTIR and Raman spectroscopy is a powerful, sensitive, and informative method for studying protein structural changes in rhodopsins during their functions. The usefulness has been historically proven for the study of bacteriorhodopsin and bovine rhodopsin before their structural determination of rhodopsins. We now have atomic structures of many animal and microbial rhodopsins, and it is now important to know the structural dynamics of rhodopsins for function. FTIR and Raman spectroscopy provides useful information for this aim. In this chapter, we introduce the methods of FTIR and resonance Raman spectroscopy applied to rhodopsins. These vibrational methods offer deeper understanding on the mechanism how rhodopsins change their structures for function.
Rhodopsin, Bacteriorhodopsins, Rhodopsins, Microbial, Spectroscopy, Fourier Transform Infrared, Animals, Cattle, Spectrum Analysis, Raman
Rhodopsin, Bacteriorhodopsins, Rhodopsins, Microbial, Spectroscopy, Fourier Transform Infrared, Animals, Cattle, Spectrum Analysis, Raman
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
