
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 35167100
Brown adipose tissue (BAT) is a thermoregulatory fat with energy-consuming properties. The location and heterogeneity of this tissue makes it complicated to sample before and after interventions in humans, and an in vitro model for mechanistic and molecular studies is therefore of great value. We here describe a protocol for isolation of progenitors from the stromal vascular fraction of BAT biopsies obtained surgically from adult humans. We further present how these cells are differentiated in vitro and finally how they are characterized for thermogenic capacity. Methods for characterization described here include norepinephrine-induced thermogenic gene expression using qPCR; norepinephrine-induced mitochondrial uncoupling using the Seahorse XFe96 Analyzer, and norepinephrine-induced expression of UCP1 using the RNAscope® Technology.
Brown fat differentiation, Adipogenesis, Cell Differentiation, Thermogenesis, Human brown adipocytes, Oxygen consumption rate in human brown adipocytes, BAT in vitro model, UCP1 RNAscope, Mitochondrial Proteins, Adipocytes, Brown, Adipose Tissue, Brown, Humans, Human BAT, Uncoupling Protein 1
Brown fat differentiation, Adipogenesis, Cell Differentiation, Thermogenesis, Human brown adipocytes, Oxygen consumption rate in human brown adipocytes, BAT in vitro model, UCP1 RNAscope, Mitochondrial Proteins, Adipocytes, Brown, Adipose Tissue, Brown, Humans, Human BAT, Uncoupling Protein 1
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
