
Microarray technology is fully established among the research fields in genetic domain. Academia and industrial researchers investigate and analyze genes' expression to obtain more and more useful information about given organisms, with the aim to perform better disease diagnosis and prediction, accurate medical data analysis, etc. Analyzing gene expression data, often available in raw form, implies a huge amount of analytical and computational complexities and therefore, innovative and intelligent mechanisms have to be designed to obtain useful information from this precious data. This chapter proposes a multiagent algorithm for building a distributed algorithm for DNA Microarray management. A collection of agents, in which each one representing a Microarray (or chip), execute in parallel a sequence of simple operations exploiting local information, and an organized virtual structure is built at global level. A word embeddings approach, able to capture the semantic context and represent Microarrays with vectors, is employed to map the chips, so allowing advanced agents' operations. A similarity-based overlay network of agents is brought out and an efficient management system of DNA Microarray is enabled. The generated virtual structure allows executing of informed operations, such as range queries, in a large dataset containing unstructured data. Preliminary results were confirm the validity of the algorithm proposed.
microarray, Algorithms, agents, Oligonucleotide Array Sequence Analysis, Semantics
microarray, Algorithms, agents, Oligonucleotide Array Sequence Analysis, Semantics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
