Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Measurement of the Intracellular Mycobacterium tuberculosis Drug Effect and Prediction of the Clinical Dose–Response Relationship Using Intracellular Pharmacodynamic Modeling (PDi)

Authors: C. Martínez-Rodríguez; Samantha Donnellan; Ghaith Aljayyoussi; Giancarlo A. Biagini;

Measurement of the Intracellular Mycobacterium tuberculosis Drug Effect and Prediction of the Clinical Dose–Response Relationship Using Intracellular Pharmacodynamic Modeling (PDi)

Abstract

The human disease tuberculosis (TB) is the leading cause of death from a single infectious agent. A quarter of the world's population is estimated to be latently infected. Drug development and screening is slow and costly. We have developed a physiologically relevant assay to screen drugs against TB when inside immune cells. This chapter will describe a newly developed preclinical drug screening assay for TB, using high-content imaging and pharmacokinetic/pharmacodynamic modeling.

Related Organizations
Keywords

Bacterial Proteins, Dose-Response Relationship, Drug, Drug Development, THP-1 Cells, Antitubercular Agents, Humans, Tuberculosis, Mycobacterium tuberculosis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!