<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 32797417
Quantification of the amount of cryoprotective agent (CPA) in a tissue is an essential step in the design of successful cryopreservation protocols. This chapter details two inexpensive methods to measure cryoprotective agent permeation into tissues as functions of time. One of the methods to measure the CPA permeation is to permeate a series of tissue samples from a surrounding solution at a specified concentration of CPA, each sample for a different amount of time, and then to quantitate the amount of CPA that was taken up in the tissue during that time period. The quantification is performed by equilibrating the permeated tissue with a surrounding solution and then measuring the osmolality of the solution to determine the amounts of CPAs that have come out of each tissue sample corresponding to each permeation time. An alternative method to measuring the CPA permeation as a function of time, which requires fewer tissue samples, is to measure the CPA efflux as a function of time. In the efflux method, a CPA-permeated tissue sample is placed in a surrounding solution, and solution samples are taken at different time points throughout the efflux to quantitate how much CPA has left the tissue by each time point.
Cartilage, Articular, Cryopreservation, Cryoprotective Agents, Swine, Osmolar Concentration, Animals, Biological Transport, Vitrification
Cartilage, Articular, Cryopreservation, Cryoprotective Agents, Swine, Osmolar Concentration, Animals, Biological Transport, Vitrification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |