
Decentralized and distributed model predictive control (DMPC) addresses the problem of controlling a multivariable dynamical process, composed by several interacting subsystems and subject to constraints, in a computation and communication efficient way. Compared to a centralized MPC setup, where a global optimal control problem must be solved on-line with respect to all actuator commands given the entire set of states, in DMPC the control problem is divided into a set of local MPCs of smaller size, that cooperate by communicating each other a certain information set, such as local state measurements, local decisions, optimal local predictions. Each controller is based on a partial (local) model of the overall dynamics, possibly neglecting existing dynamical interactions. The global performance objective is suitably mapped into a local objective for each of the local MPC problems.
TJ Mechanical engineering and machinery
TJ Mechanical engineering and machinery
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 58 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
