
Optimization is a central theme of applied mathematics that involves minimizing or maximizing various quantities. This is an important application of the derivative tests in calculus. In addition to the first and second derivative tests of one-variable calculus, there is the powerful technique of Lagrange multipliers in several variables. This chapter is concerned with analogues of these tests that are applicable to functions that are not differentiable. Of course, some different hypothesis must replace differentiability, and this is the notion of convexity. It turns out that many applications in economics, business, and related areas involve convex functions. As in other chapters of this book, we concentrate on the theoretical underpinnings of the subject. The important aspect of constructing algorithms to carry out our program is not addressed. However, the reader will be well placed to read that material. Results from both linear algebra and calculus appear regularly.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
