Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-0-...
Part of book or chapter of book . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cyanobacteria blooms: effects on aquatic ecosystems

Authors: Karl E. Havens;

Cyanobacteria blooms: effects on aquatic ecosystems

Abstract

Cyanobacteria become increasingly dominant as concentrations of TP and TN increase during eutrophication of lakes, rivers and estuaries. Temporal dynamics of cyanobacteria blooms are variable--in some systems persistent blooms occur in summer to fall, whereas in other systems blooms are more sporadic. Cyanobacteria blooms have a wide range of possible biological impacts including potential toxic effects on other algae, invertebrates and fish, impacts to plants and benthic algae due to shading, and impacts to food web function as large inedible algae produce a bottleneck to C and energy flow in the plankton food web. In lakes with dense blooms of cyanobacteria, accumulation of organic material in lake sediments and increased bacterial activity also may lead to anoxic conditions that alter the structure of benthic macro-invertebrates. Diffusive internal P loading may increase, and hypolimnetic anoxia may lead to a loss of piscivorous fish that require a summer cold water refuge in temperate lakes. Ecosystem changes associated with frequent blooms may result in delayed response of lakes, rivers and estuaries to external nutrient load reduction. Despite numerous case studies and a vast literature on species-specific responses, community level effects of cyanobacterial blooms are not well understood--in particular the realized impacts of toxins and changes in food web structure/function. These areas require additional research given the prevalence of toxic blooms in the nation's lakes, rivers and coastal waters--systems that provide a wide range of valued ecosystem services.

Related Organizations
Keywords

Geologic Sediments, Fresh Water, Eutrophication, Cyanobacteria, Models, Biological, Animals, Biomass, Seasons, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    238
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
238
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?