Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1007/978-0-...
Part of book or chapter of book . 2006 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Positron Emission Tomography

Authors: Gopal B. Saha;

Positron Emission Tomography

Abstract

Positron emission tomography (PET) is based on the detection in coincidence of the two 511-keV annihilation radiations that originate from β + -emitting sources, such as the patient containing β + -emitting radioactivity. Positrons are annihilated in body tissue and produce two 511-keV annihilation photons that are emitted in opposite directions (180°). Two photons are detected in an electronic time interval, called “coincidence time window”, by two detectors connected in coincidence. Conversion of 511-keV photons to light photons in the detector, formation of a pulse by the PM tube, and pulse-height analysis follow the same principles as in conventional gamma cameras. Detectors are arranged in the array of several rings to have the organ of interest in the field of view. Data collected over 360° simultaneously around the body axis of the patient are used to reconstruct the image of the activity distribution in the slice of interest. Because the two opposite photons are detected in a straight line, no collimator is needed to limit the field of view, and the technique is called the electronic collimation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?