
Interest in nanoindentation has spawned a number of nanoindentation instruments that compete on a world market. Purchasers of such instruments are universities, private and government research organisations, and quality control laboratories. There is particular interest within the semiconductor industry that is concerned with the mechanical properties of a wide range of thin films. All of the products described in this chapter are depth-sensing devices. The instruments typically measure depth of penetration using either an inductance or capacitance displacement sensor. A typical nanoindentation test instrument, or “nanoindenter”, has a depth resolution of less than a tenth of a nanometre and a force resolution of several nanonewtons. Load can be applied by the expansion of the piezoelectric element, the movement of a coil in a magnetic field, or electrostatically. Maximum loads are usually limited to the millinewton range. The minimum load is usually less than a micronewton.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
