
Fabry disease (FD), an X-linked lysosomal storage disease, results from an α-galactosidase A deficiency and altered sphingolipid metabolism. An accumulation of globotriaosylsphingosine (lyso-Gb3) likely triggers the pathological cascade leading to disease phenotype. The pathogenic significance of several Fabry mutations including the R118C α-galactosidase (GLA) gene variant has been disputed. We describe three members of the same family with the R118C variant, each having documented clinical signs of FD, low residual enzyme levels, and an elevated lyso-Gb3 in one heterozygote.Determining the clinical significance of each GLA gene variant remains an ongoing challenge, with potential for inadequate treatment if the diagnosis of FD is missed. Elevated lyso-Gb3 has been shown to be the most reliable noninvasive marker of clinically relevant GLA variants. While the R118C variant will likely lead to a milder phenotype, additional genetic, epigenetic, and environmental factors can ameliorate or exacerbate the expression and impact on the resultant phenotype and associated complications. Patients affected with this variant warrant closer review and better management of disease risk factors.
616, 610
616, 610
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
