
doi: 10.1007/82_2012_293
pmid: 23197305
During newt lens regeneration a unique transdifferentiation event occurs. In this process, dorsal iris pigmented epithelial cells transdifferentiate into lens cells. This system should provide a new insight into cellular plasticity in basic and applied research. Recently, a series of approaches to study epigenetic reprogramming during transdifferentiation have been performed. In this review, we introduce the regulation of dynamic regulation of core-histone modifications and the emergence of an oocyte-type linker histone during transdifferentiation. Finally, we show supporting evidence that there are common strategies of reprogramming between newt somatic cell in transdifferentiation and oocytes after somatic cell nuclear transfer.
Epigenomics, Histones, Cell Transdifferentiation, Lens, Crystalline, Molecular Sequence Data, Animals, Regeneration, Amino Acid Sequence, Cellular Reprogramming, Salamandridae
Epigenomics, Histones, Cell Transdifferentiation, Lens, Crystalline, Molecular Sequence Data, Animals, Regeneration, Amino Acid Sequence, Cellular Reprogramming, Salamandridae
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
