Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/82_201...
Part of book or chapter of book . 2010 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Hypoxia and Hypoxia Inducible Factors in Cancer Stem Cell Maintenance

Authors: Zhizhong, Li; Jeremy N, Rich;

Hypoxia and Hypoxia Inducible Factors in Cancer Stem Cell Maintenance

Abstract

Hypoxia promotes tumor progression through multiple mechanisms including modifying angiogenesis, metabolism switch and invasion. Hypoxia inducible factors (HIFs), particularly HIF1α and HIF2α, are key mediators in cancer hypoxia response and high expression levels of HIFs correlate with a poor prognosis in various tumor types. Cancer stem cells (CSCs), also known as cancer initiating cells or tumor propagation cells, are neoplastic cells that could self-renewal, differentiate as well as initiate tumor growth in vivo. Cancer stem cells are believed to be the key drivers in tumor growth and therapy resistance. Hypoxia has been shown to help maintain multiple normal stem cell population but its roles in cancer stem cells were largely unknown. Our group and other researchers recently identified that hypoxia is also a critical microenvironmental factor in regulating cancer stem cells' self-renewal, partially by enhancing the activity of stem cell factors like Oct4, c-Myc and Nanog. The effects of hypoxia on cancer stem cells seem to be primarily mediated by HIFs, particularly HIF2α. HIF2α is highly expressed in cancer stem cells in gliomas and neuroblastomas and loss of HIF2α leads to significant decrease in cancer stem cell proliferation and self-renewal. These findings illustrated a new mechanism through which oxygen tension and microenvironment influences cancer development. Targeting hypoxia niches may therefore improve therapy efficacy by eliminating cancer stem cell population.

Related Organizations
Keywords

Basic Helix-Loop-Helix Transcription Factors, Neoplastic Stem Cells, Animals, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Cell Hypoxia

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!