Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/7651_2...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Fractionation of Soluble Proteins Using DEAE-Sepharose, SP-Sepharose, and Phenyl Sepharose Chromatographies for Proteomics

Authors: Parhom, Towfighi; Jacob, Shaw; Tara, Sigdel;

Fractionation of Soluble Proteins Using DEAE-Sepharose, SP-Sepharose, and Phenyl Sepharose Chromatographies for Proteomics

Abstract

In order to simplify a complex mixture of soluble proteins from tissues, a protocol to fractionate samples prior to two-dimensional (2D) gel electrophoresis has been developed. These methods involve the use of DEAE-Sepharose, SP-Sepharose, and phenyl Sepharose chromatographic columns and the fractionation of the protein mixtures based on differential anionic, cationic, and hydrophobic properties of the proteins, respectively. Fractionation of the soluble proteins with DEAE-Sepharose can result in an increase in the number of detectable 2D gel spots. These gel spots are amenable to protein identification by using in-gel trypsin digestions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and peptide mass fingerprinting. The DEAE-Sepharose column fractionation acts to partition soluble proteins from cell extracts. Similarly, a SP-Sepharose column can fractionate soluble proteins and increase the number of detectable gel spots. Lastly, fractionation of cell extract with a phenyl Sepharose column can also result in an increase in the number of detectable 2D gel spots. This chapter describes an easy, inexpensive way to fractionate soluble proteins and a way to better profile proteomes.

Related Organizations
Keywords

Proteomics, Proteome, Sepharose, Proteins, Chemical Fractionation, Chromatography, Agarose, Peptide Mapping, Solubility, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Animals, Chemical Precipitation, Humans, Electrophoresis, Gel, Two-Dimensional, Electrophoresis, Polyacrylamide Gel

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!