
The intestinal epithelial cells function to gain nutrients, retain water and electrolytes, and form an efficient barrier against foreign microbes and antigens. Researchers employed cell culture lines derived from human or animal cancer cells as experimental models in vitro for understanding of intestinal infections. However, most in vitro models used to investigate interactions between bacteria and intestinal epithelial cells fail to recreate the differentiated tissue components and structure observed in the normal intestine. The in vitro analysis of host-bacteria interactions in the intestine has been hampered by a lack of suitable intestinal epithelium culture systems. Here, we present a new experimental model using an organoid culture system to study bacterial infection.
Organoids, Bacteria, Host-Pathogen Interactions, Cell Culture Techniques, Humans, Cell Differentiation, Intestinal Mucosa, Cells, Cultured
Organoids, Bacteria, Host-Pathogen Interactions, Cell Culture Techniques, Humans, Cell Differentiation, Intestinal Mucosa, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
